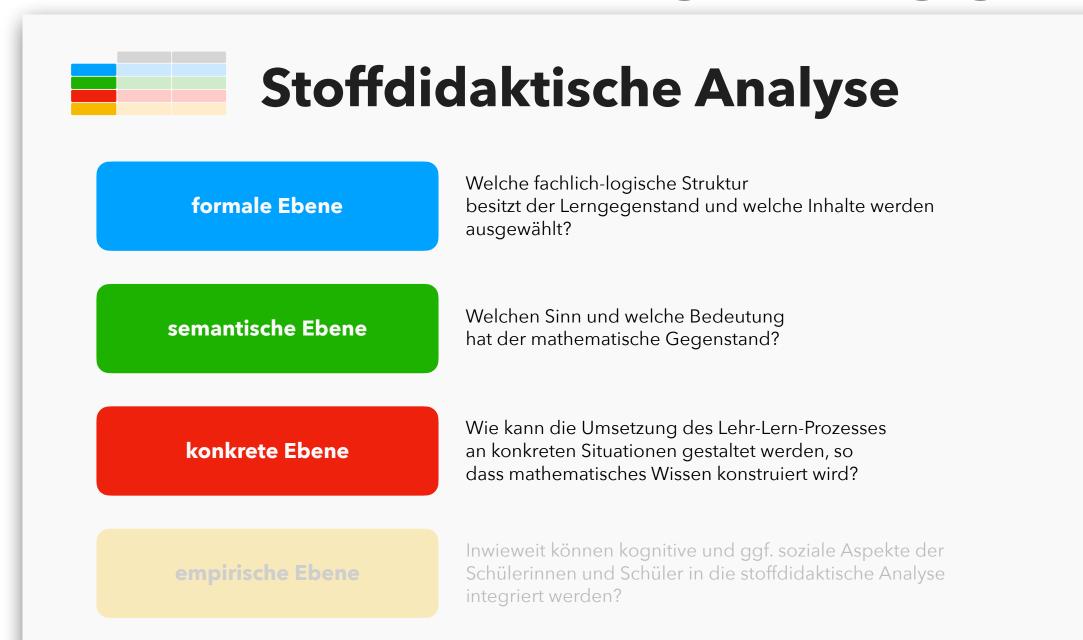
Universität Potsdam – Wintersemester 2025/26

Stoffdidaktik Mathematik

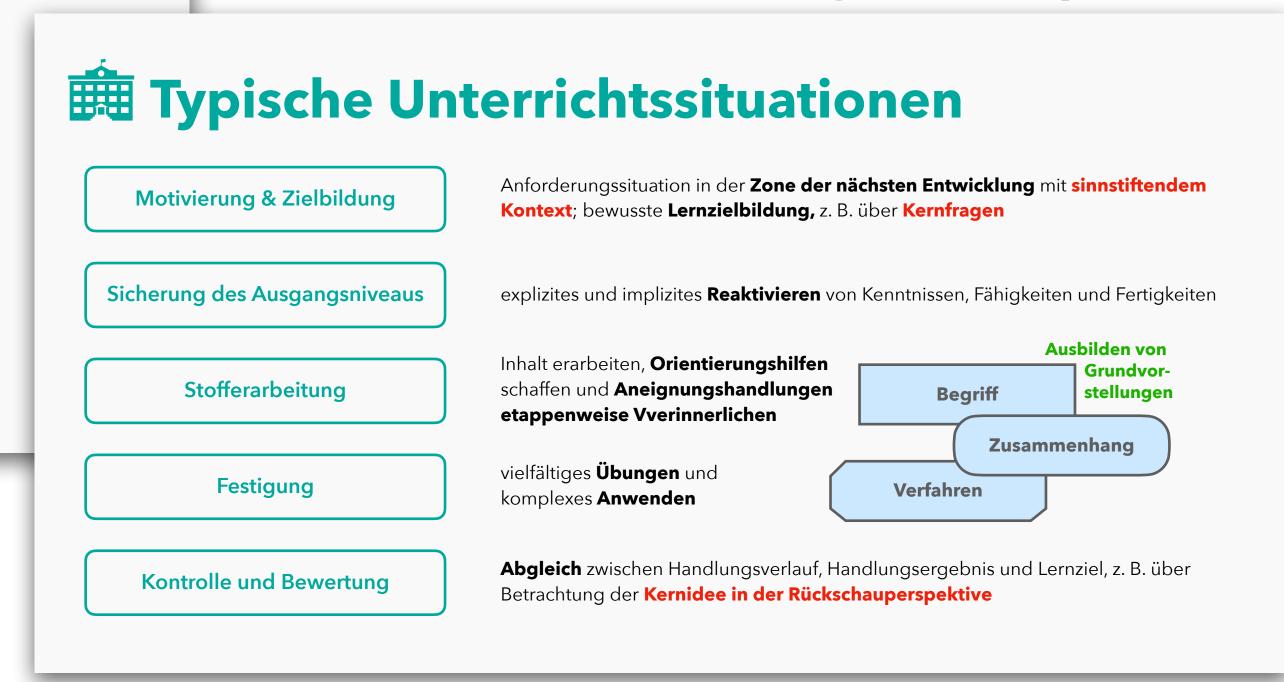
Kapitel 9 - Beispiel: Arithmetisches Mittel

Stoffdidaktik Mathematik

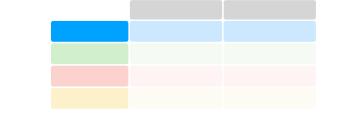

Kapitel 9 - Beispiel: Arithmetisches Mittel

- Ihr könnt die Strukturierung einer Unterrichtsstunde zum arithmetischen Mittel nachvollziehen.
- Ihr erkennt den Nutzen stoffdidaktischer Analysen und tätigkeitstheoretischer Modelle für die strukturierte Planung von Mathematikunterricht.
- Ihr habt einen Einblick in die Gestaltung von Arbeitsmitteln am Beispiel des arithmetischen Mittels.

Arithmetisches Mittel

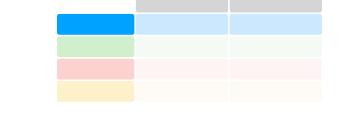


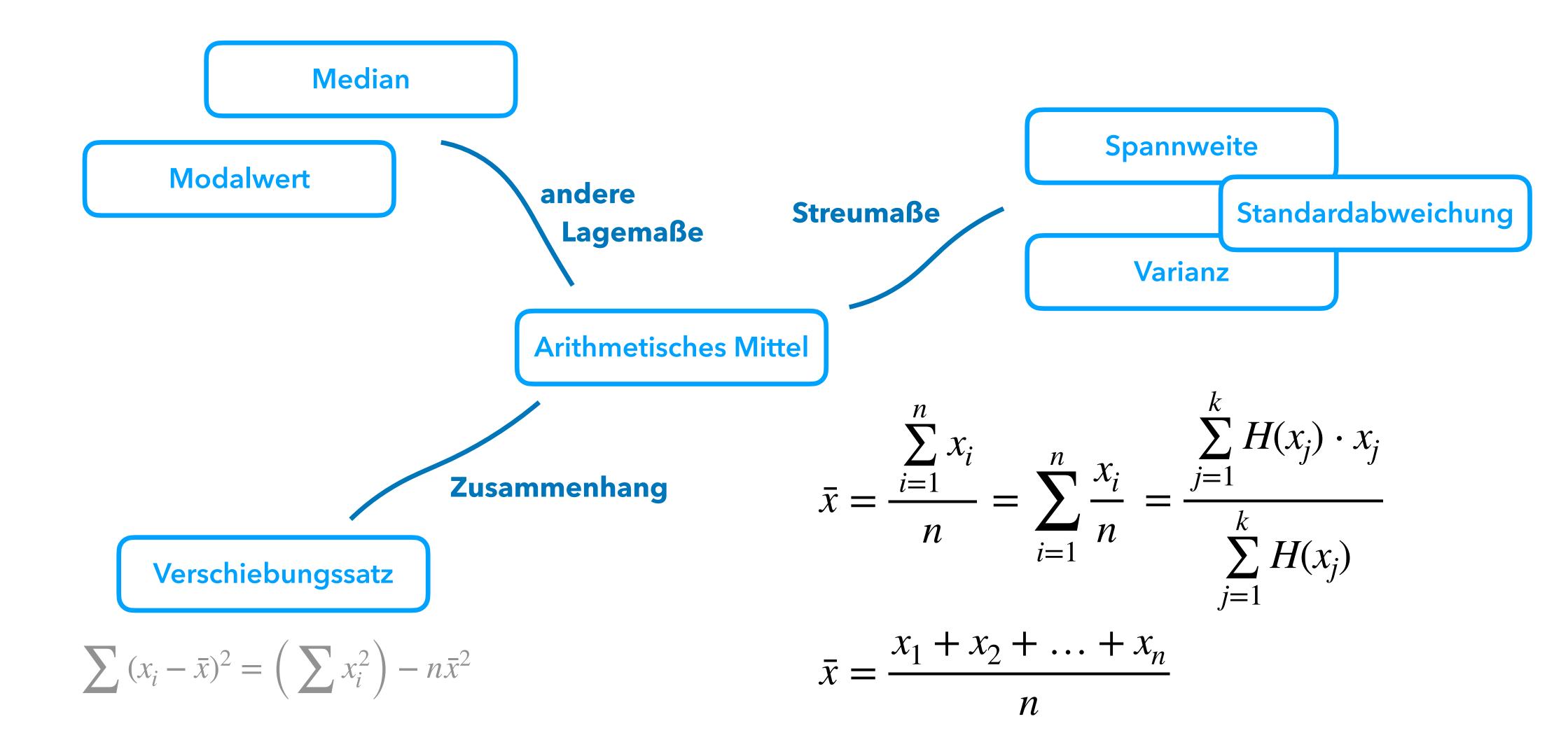
Ziel: Auswahl und Anordnung von Lerngegenständen



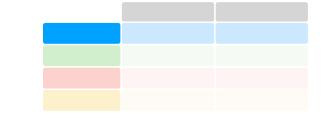
Blick auf einzelne Unterrichtsstunde(n)

Ziel: Gestaltung des Lernprozesses

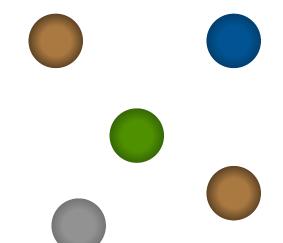

Formales



$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{\sum_{j=1}^{k} H(x_j) \cdot x_j}{\sum_{j=1}^{k} H(x_j)}$$


$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Formales


Formales

Modalwert

nominale Daten

Median

ordinale Daten

Wie geht's uns denn heute?

gut so la la schlecht so la la

gut

Arithmetisches Mittel

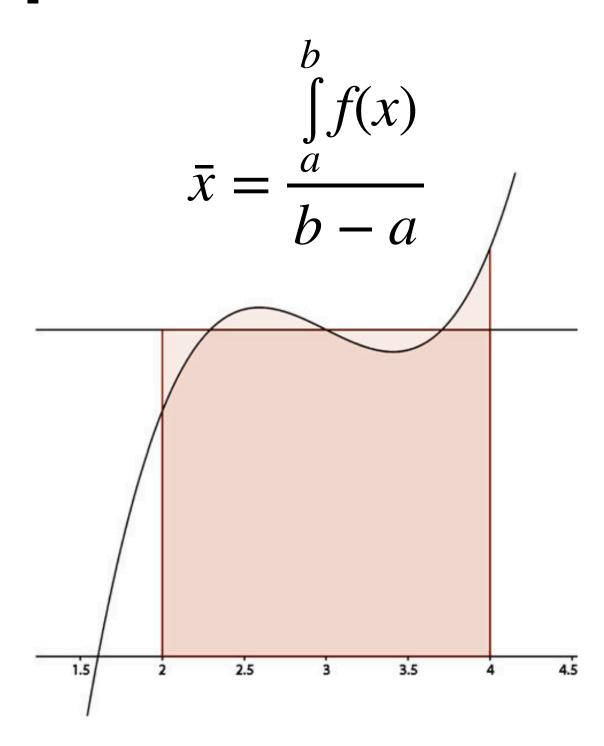
metrische Daten

124 m 132 m

128 m 150 m 141 m

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

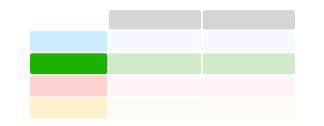
Bedeutung



$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

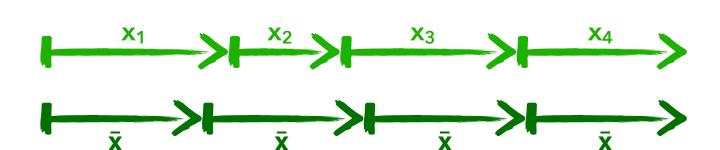
fachliche Aspekte

- fiktive Größe
- Vergleichswert
- Prognosewert
- repräsentativer Wert


spätere Lerninhalte

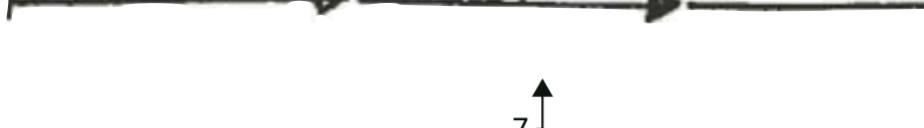
(Greefrath et al., 2016, S. 251)

(Krüger et al., 2015, S. 56 f.)


Grundvorstellungen

metrische Daten

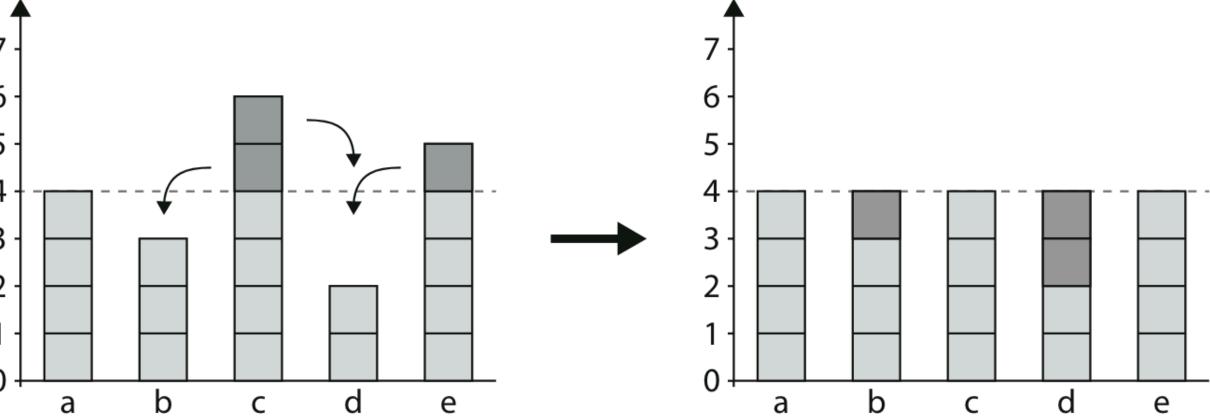
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$


Vergleichswert repräsentativer Wert

45 km

² km

83 km


?km

Ausgleichswert

Heiko Etzold, 2025

55 km

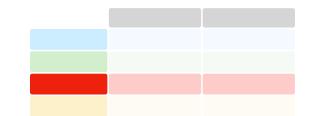
2 km

95 km

2 km

82 km

? km

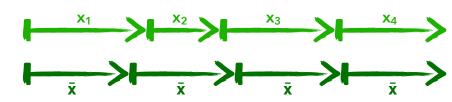

(Krüger et al., 2015, S. 56 ff., 64)

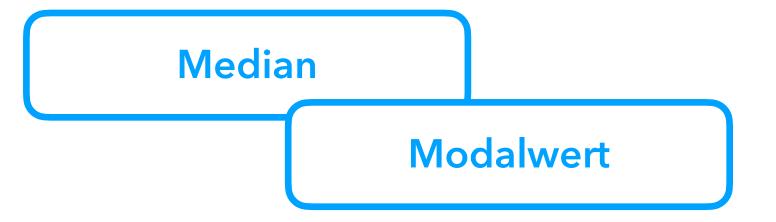
Kernfragen

Spannweite

Varianz

Standardabweichung




metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Arithmetisches Mittel

Wie kann ich das durchschnittliche Ergebnis einer Messreihe **berechnen**?

Wie finde ich einen Wert, der repräsentativ für meine Messreihe ist?

Wie kann ich viele Ergebnisse einer Messreise mithilfe weniger Werte vergleichen?

Kontext

Lebensweltbezug • Authentizität • Reichhaltigkeit

Sportliche Leistungen miteinander vergleichen



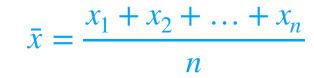
metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

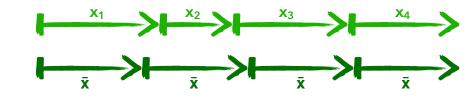
Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?



題 Motivierung & Zielbildung


Arithmetisches Mittel

metrische Daten

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lehrziele

Die Schülerinnen und Schüler ...

- ...können das arithmetische Mittel einer Messreihe berechnen.
- ...können erklären, wofür man des arithmetischen Mittel benötigt.

schlechtere Formulierungen:

- ... kennen das arithmetische Mittel.
- ... wissen, wofür man das arithmetische Mittel benötigt.

Wir wollen lernen, wie man das durchschnittliche Ergebnis einer Messreihe berechnen kann.

III Motivierung & Zielbildung

Mara und Lasse haben Weitsprung geübt. Wer von den beiden ist besser?

Maras Sprungweiten: 3,20 m; 1,90 m; 3,00 m; 2,90 m

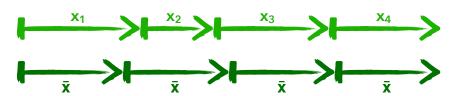
Lasses Sprungweiten: 3,10 m; 2,90 m; 2,70 m; 2,60 m; 3,00 m

gemeinsam (z. B. Plenum oder Murmelphase)

- Situation analysieren, Vorschläge zur Lösung einholen »Wie kann ich die beiden miteinander vergleichen?« »Was heißt es, besser zu sein?«
- Lernziel herausarbeiten (und ggf. festhalten)

Wir wollen lernen, wie man das durchschnittliche Ergebnis einer Messreihe berechnen kann.

Wir wollen nicht nur herausfinden, wer besser ist, sondern wollen lernen, wie wir das herausfinden.


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

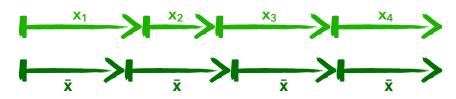
Kontext: Sportliche Leistungen miteinander vergleichen

Einstiegsalternativen

- realen Wettbewerb durchführen und Daten nutzen
- Daten aus vorherigen Stunden verwenden
- Anzahlen der Messwerte sollten nicht gleich sein
- Messreihe mit mehr Werten sollte keine kleinere Summe haben als andere Messreihe
- Gefahr der Zielverschiebung (Wettbewerb statt Mathematik)

gemeinsam (z. B. Plenum oder Murmelphase)

- Situation analysieren, Vorschläge zur Lösung einholen »Wie kann ich die beiden miteinander vergleichen?« »Was heißt es, besser zu sein?«
- Lernziel herausarbeiten (und ggf. festhalten)


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

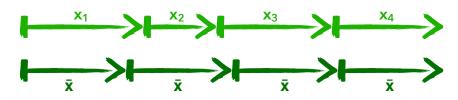
Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn. Ergebnis einer Messreihe berechnet

Erkundungsauftrag (z. B. in Partnerarbeit)

- 1. Begründe, warum es nicht ausreicht, die Gesamtstrecken von Mara und Lasse zu vergleichen.
- 2. Zeichne dir die Sprungweiten für Mara in einem geeigneten Maßstab nebeneinander.
 - Überlege anschließend, wie lang die einzelnen Weiten wären, wenn Mara bei jedem Sprung dieselbe Weite gesprungen hätte.
- 3. Wiederhole das Vorgehen mit Lasse und vergleiche anschließend die durchschnittlichen Leistungen der beiden.


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

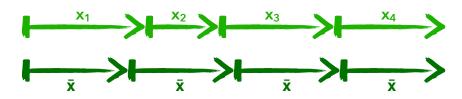
Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn.
Ergebnis einer
Messreihe berechnet

Erkundungsauftrag (z. B. in Partnerarbeit)

gemeinsam (Plenum)

- Begründung, dass Addieren nicht reicht, kurz besprechen
- Vorgehen bei Mara beschreiben und begründen lassen.
 »Wie bist du vorgegangen?«
- Ergebnis bei Lasse vergleichen
- Allgemeinheit (unabhängig vom Kontext) herausarbeiten. »Was muss man also allgemein tun, wenn man eine Messreihe hat und den durchschnittlichen Wert berechnen möchte?«
- Bezeichner »arithmetisches Mittel« einführen
- Aufschreiben einer Definition und eines Vorgehens zum Bestimmen des arithmetischen Mittels


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

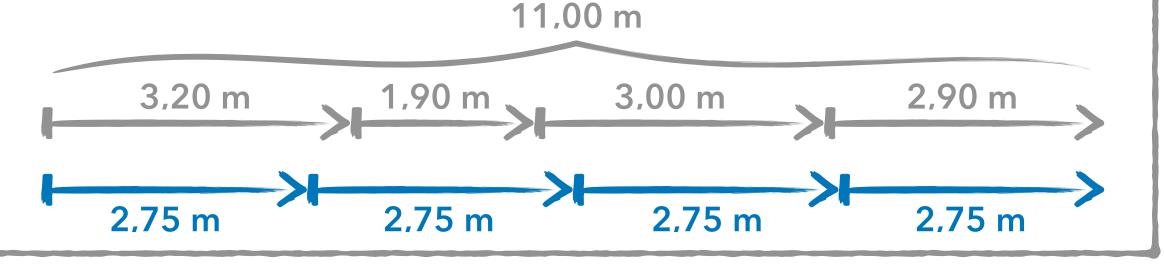
Lernziel: lernen, wie man das durchschn.
Ergebnis einer
Messreihe berechnet

möglicher Hefteraufschrieb

Arithmetisches Mittel

Das arithmetische Mittel \bar{x} beschreibt einen <u>Durchschnittswert</u> einer

Messreihe. Hat man die Messwerte $x_1, x_2, ..., x_n$, so gilt: $\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n}$

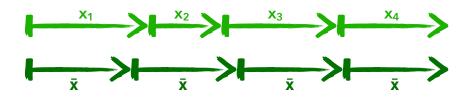

So geht man bei der Berechnung vor:

- 1. Addiere zuerst alle Messwerte.
- 2. Teile anschließend das Ergebnis durch die Anzahl der Werte.

Beispiel: Sprungweiten 3,20 m; 1,90 m; 3,00 m; 2,90 m

$$\bar{x} = \frac{3,2 + 1,9 + 3 + 2,9}{4}$$

$$= \frac{11}{4} = 2,75$$


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn.
Ergebnis einer
Messreihe berechnet

möglicher Hefteraufschrieb

gemeinsam (z. B. Plenum)

- Aufschreiben einer Definition und eines Vorgehens zum Bestimmen des arithmetischen Mittels
- Erstaneignung
 - Beispiel in Anschluss an Definition
 - berechnen und beschreiben
 - Fehler finden und korrigieren

Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

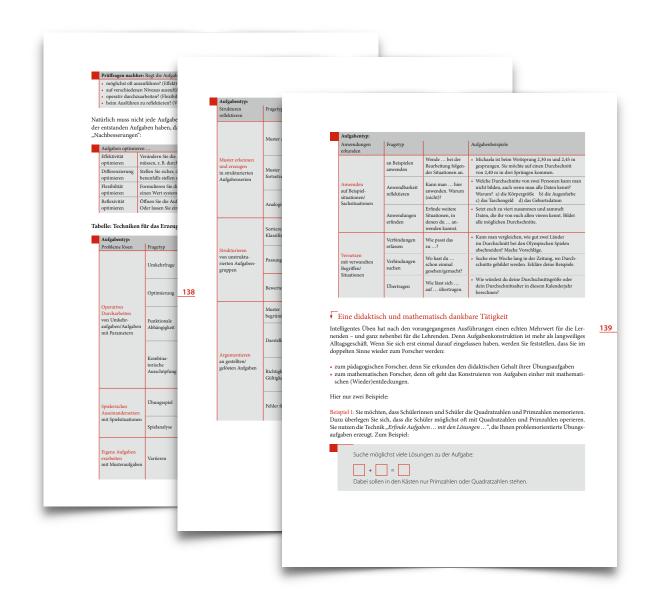
Vergleichswert repräsentativer Wert

Aufgaben zur Erstaneignung

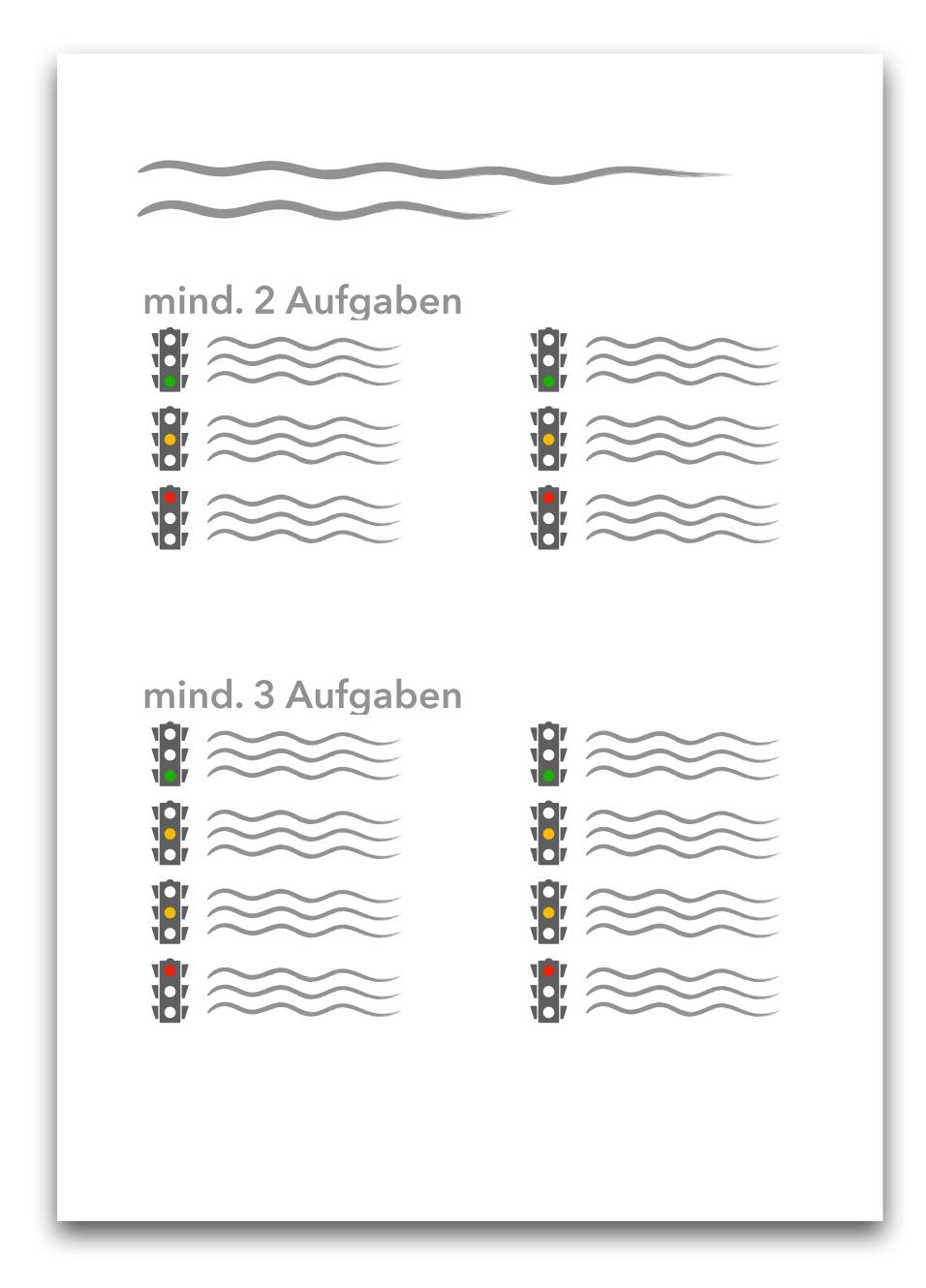
Berechne das arithmetisches Mittel.
 Beschreibe anschließend dein Vorgehen.

- a) 2; 4; 3; 7; 8
- **b)** 2,5; 1,2; 5; 7,2

- a) 5; 2; 8; 3; 4
- **b)** 3,1; 1,2; 7; 4,8
- 2. Erkläre, welcher Fehler, beim Berechnen des arithmetischen Mittels der Datenreihe 10; 17; 12; 13; 20 gemacht wurde und korrigiere ihn.


$$\bar{x} = 10 + 17 + 12 + 13 + 20 : 5 = 56$$

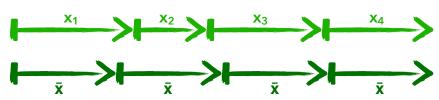
3. Beschreibe, wie du beim Berechnen des arithmetischen Mittels mit dem Taschenrechner vorgehen kannst.



vielfältige Übungen

- zum Teil in Einzelarbeit
- Vergleich z. B. über Lösungszettel
- ggf. Unterbrechung für Besprechung im Plenum

(Leuders, 2009, S. 137 ff.)


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

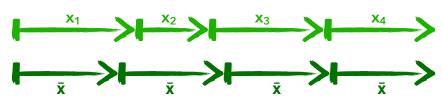
Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn. Ergebnis einer Messreihe berechnet

Reflexionsfragen mit Bezug zum Lernziel

- »Fasse zusammen, was wir heute neues gelernt haben.«
- »Wofür benötigt man das arithmetische Mittel?«
- »Erkläre, wie man das arithmetische Mittel berechnet.«


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

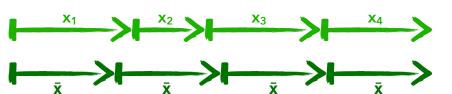
Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn. Ergebnis einer Messreihe berechnet


Arithmetisches Mittel

metrische Daten

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Vergleichswert repräsentativer Wert

Grundv.: Wert der gleichm. Verteilung

Kernfrage: Wie kann ich das durchschnittliche Ergebnis einer Messreihe berechnen?

Kontext: Sportliche Leistungen miteinander vergleichen

Lernziel: lernen, wie man das durchschn. Ergebnis einer Messreihe berechnet

5'

Motivierung & Zielbildung

Diskussion des Einstiegsbeispiels und Zielformulierung für Stunde

Weitsprung von Mara und Lasse

20′

Stofferarbeitung

Erkundungsauftrag und Handlungen am Beispiel

Verallgemeinerung und Erarbeiten der Berechnungsvorschrift

1. addiere alles, 2. teile durch Anzahl

Erstaneignung (Plenum und Partnerarbeit)

Beispiel, Realisieren, Fehlerfinden

vielfältiges Üben mit differenzierenden Aufgaben

3'

17'

Kontrolle und Bewertung

Festigung

mündliche Zusammenfassung der Stunde, Bezugnahme zum Lernziel

Literatur

Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V., & Weigand, H.-G. (2016). *Didaktik der Analysis. Aspekte und Grundvorstellungen zentraler Begriffe* (F. Padberg & A. Büchter, Hrsg.; 4. Aufl.). Springer Spektrum. https://doi.org/10.1007/978-3-662-48877-5

Krüger, K., Sill, H.-D., & Sikora, C. (2015). *Didaktik der Stochastik in der Sekundarstufe I.* Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43355-3

Leuders, T. (2009). Intelligent üben und Mathematik erleben. In T. Leuders, L. Hefendehl-Hebeker, & H.-G. Weigand (Hrsg.), *Mathemagische Momente* (S. 130-143). Cornelsen. https://home.ph-freiburg.de/leudersfr/preprint/
2009_leuders_intelligent_ueben_mathemagische_momente.pdf

Heiko Etzold, 2025