Universität Potsdam – Wintersemester 2025/26

Stoffdidaktik Mathematik

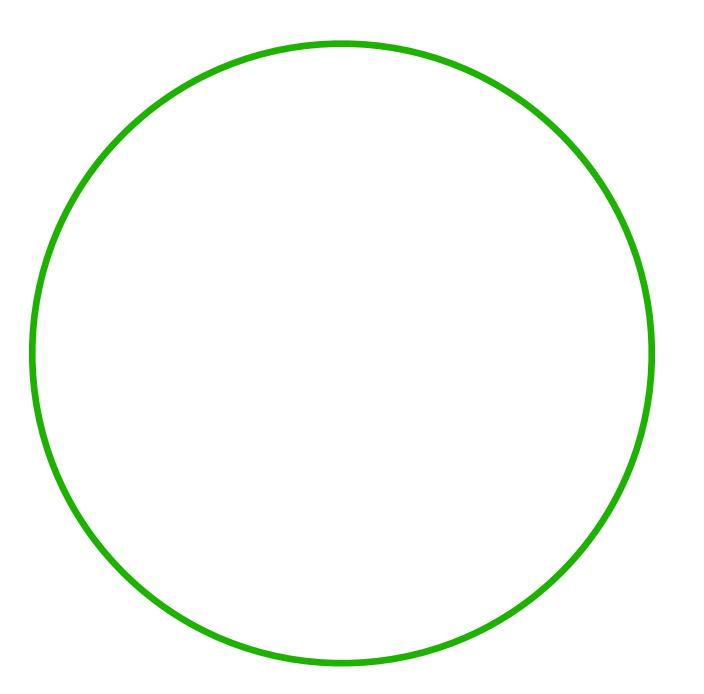
Kapitel 4 - Darstellungen und Arbeitsmittel

Stoffdidaktik Mathematik

Kapitel 4 - Darstellungen und Arbeitsmittel

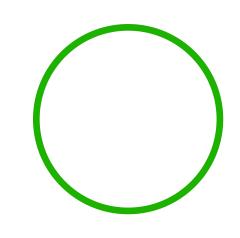
- Sie kennen Möglichkeiten, mathematisches Verständnis mithilfe von Darstellungen auszubilden.
- Sie können Arbeitsmittel über Anschaulichkeit, Abstraktheit und Operierbarkeit charakterisieren.
- Sie kennen ausgewählte Arbeitsmittel für den Mathematikunterricht.

Ist das ein Kreis?

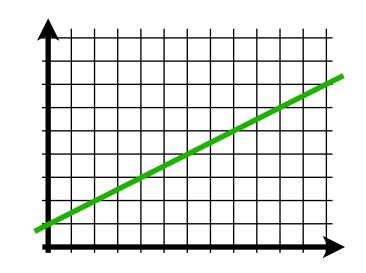


Nein, das ist die **Darstellung** eines Kreises!

(mehr dazu bei Salle et al., S. 431 – 435)



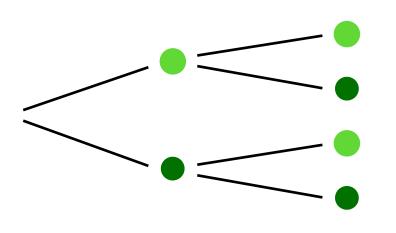
Darstellungen



[Mathematische] **Darstellungen** sind [...] alles **empirisch Wahrnehmbare**, das auf **mathematische Beziehungen, Objekte, Strukturen und Prozesse verweisen** kann.

Darunter fallen z. B. Wendeplättchen, Rechenrahmen, Zehnersystem-Material, Tangram, Flächenund Kantenmodelle, Fotos (z. B. von Hängebrücken oder symmetrischen Anordnungen in der Umwelt), Filme bzw. bewegte Bilder im weiteren Sinne, Punktefelder, Diagramme, Tabellen, Zahlenstrahle, Koordinatensysteme, Graphen, Schrägbilder, Drei-Tafel-Projektionen, Skizzen, Gesten und Handlungen mit und an Objekten, Terme, Formeln und Variablen.

$$V = \frac{1}{3}\pi r^2 h$$



(Salle et al., 2013, S. 437)

Grundvorstellungen mit Darstellungen ausbilden

- Veränderungen beim Darstellungswechsel untersuchen
 - EIS-Prinzip / Prinzip der Darstellungsvernetzung
- Operative Veränderungen von Darstellungen untersuchen
 - Operatives Prinzip
- Reflexion und sprachliche Begleitung
 - (Prinzip der etappenweisen Verinnerlichung)

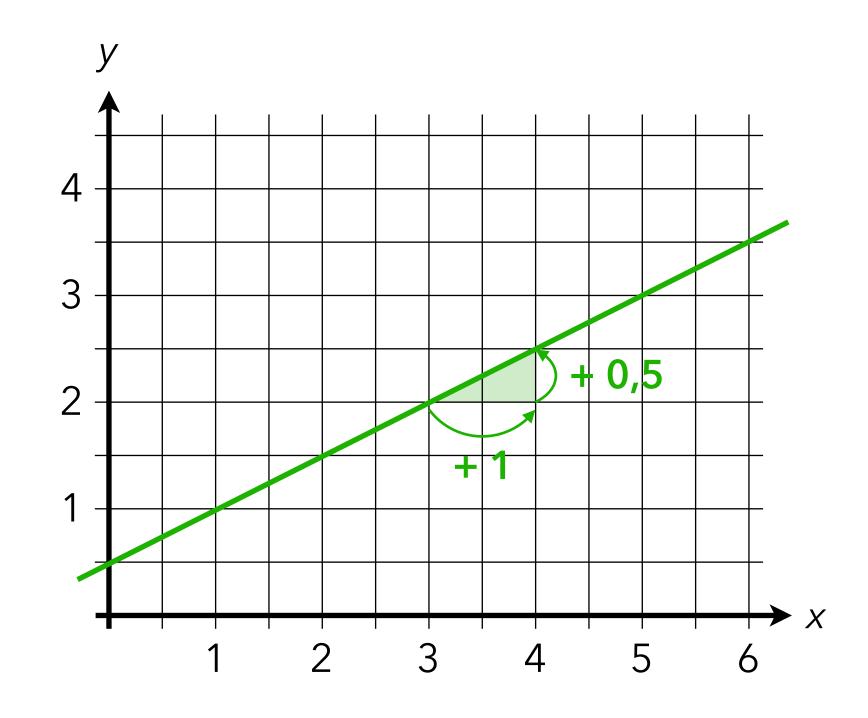
(Salle et al., 2013, S. 441 ff.)

Was verändert sich? Was bleibt gleich?

Veränderungen beim Darstellungswechsel untersuchen

Begriff
»Lineare Funktion«

	X	У	_
	0	0,5	\
+1	1	1	+ 0,5
+1	2	1,5	+ 0,5
+1 (3	2	+ 0,5
+1 (4	2,5	+ 0,5
+1 (5	3	+ 0,5



Was passiert mit ..., wenn ...

Operative Veränderungen von Darstellungen untersuchen

Zusammenhang »Distributivgesetz«

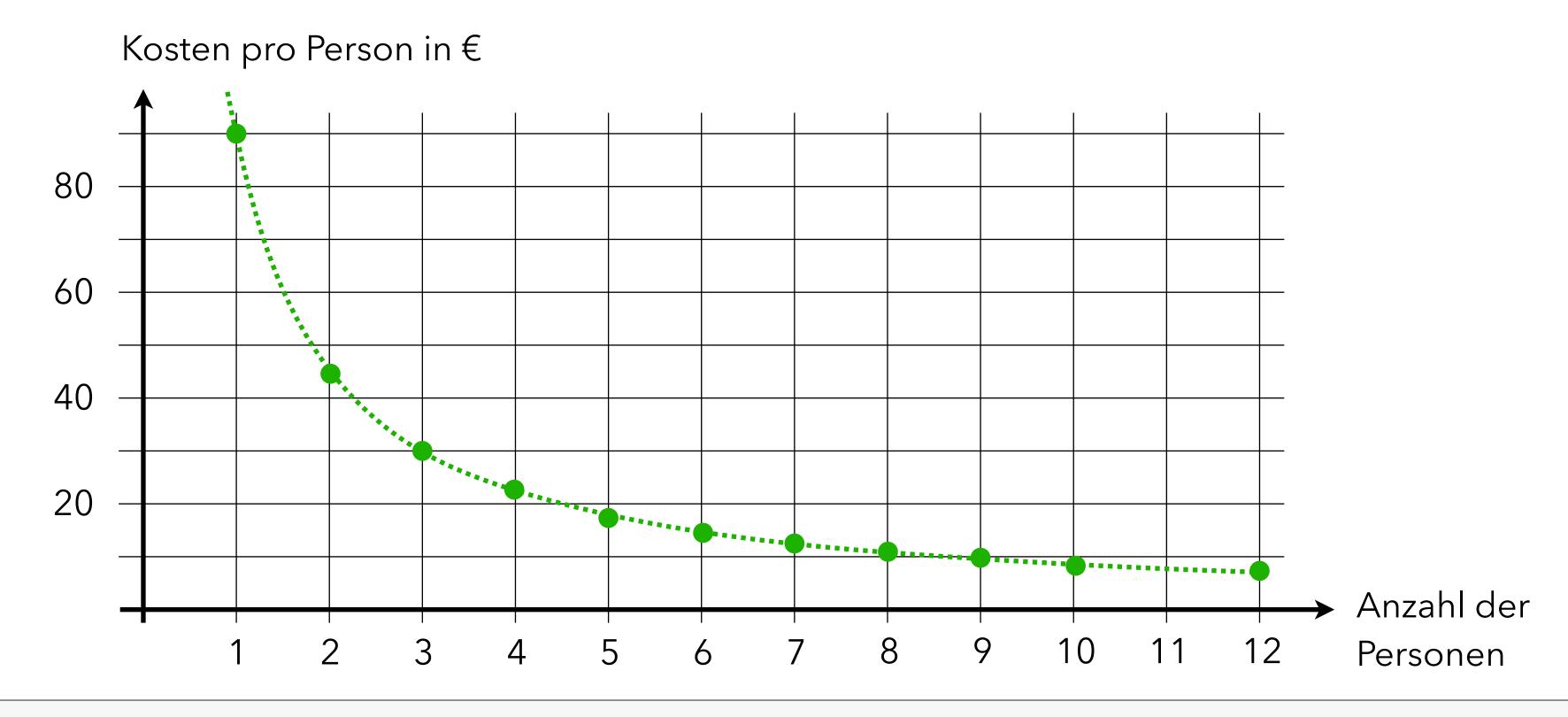
$$2 \cdot (3 + 7) = 20$$
 $3 \cdot (3 + 7) = 20$...
 $2 \cdot (3 + 8) = ?$ $3 \cdot (3 + 8) = ?$
 $2 \cdot (3 + 9) = ?$ $3 \cdot (3 + 9) = ?$
 \vdots

Reflexion und sprachliche Begleitung

Wieso sieht die Darstellung so aus? Wieso verhält sie sich so?

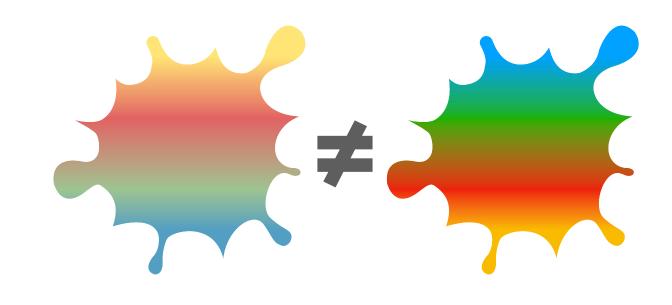
Begriff »Definitionsbereich«

> Die Kosten einer 90 € teuren Feier werden gleichmäßig auf die Anzahl der Personen aufgeteilt.



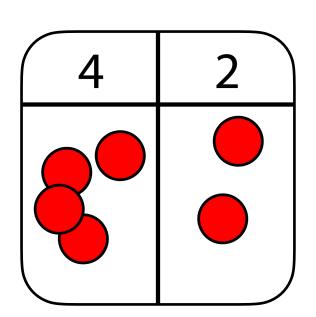
Reflexion und sprachliche Begleitung

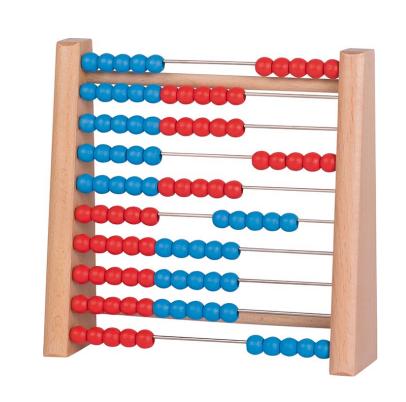
- Das Kind handelt am geeigneten Material.
- Die mathematische Bedeutung der Handlung wird beschrieben. Zentral: Versprachlichen der Handlung und der mathematischen Symbole.
 - Das Kind beschreibt die Materialhandlung mit Sicht auf das Material.
- 2 Es handelt jedoch nicht mehr selbst, sondern diktiert einem Partner die Handlung und kontrolliert den Handlungsprozess durch Beobachtung.
 - Das Kind beschreibt die Materialhandlung ohne Sicht auf das Material.
- Für die Beschreibung der Handlung ist es darauf angewiesen, sich den Prozess am Material vorzustellen.
 - Das Kind arbeitet auf symbolischer Ebene, übt und automatisiert.
- 4 Gegebenenfalls wird die entsprechende Handlung in der Vorstellung aktiviert.

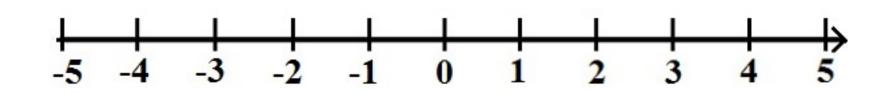


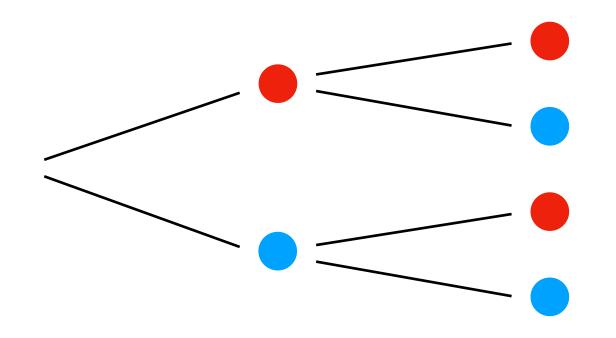
(Wartha & Schulz, 2011, S. 11)

Arbeitsmittel









abstrakt

enthält die dem Wesen des Lerngegenstands entsprechenden Merkmale und Relationen

anschaulich

macht die dem Lerngegenstand zugrundeliegende Struktur der Wahrnehmung und Vorstellung zugänglich

operierbar

ermöglicht, Handlungen durchzuführen, die der Aneignung des Wesens des Lerngegenstands dienlich sind

Arbeitsmittel

Ein **Arbeitsmittel** ist eine **materielle oder materialisierte** Darstellung eines Lerngegenstands, die es ermöglicht, mit dem Lerngegenstand zu **operieren**. Damit muss ein Arbeitsmittel folgende Bedingungen erfüllen:

- Es enthält die dem Wesen des Lerngegenstands entsprechenden Merkmale und Relationen (Abstraktheit).
- Es macht die dem Lerngegenstand zugrundeliegende Struktur der Wahrnehmung und Vorstellung zugänglich (Anschaulichkeit).
- Es ermöglicht, Lernhandlungen durchzuführen, die der Aneignung des Wesens des Lerngegenstands dienlich sind (Operierbarkeit).

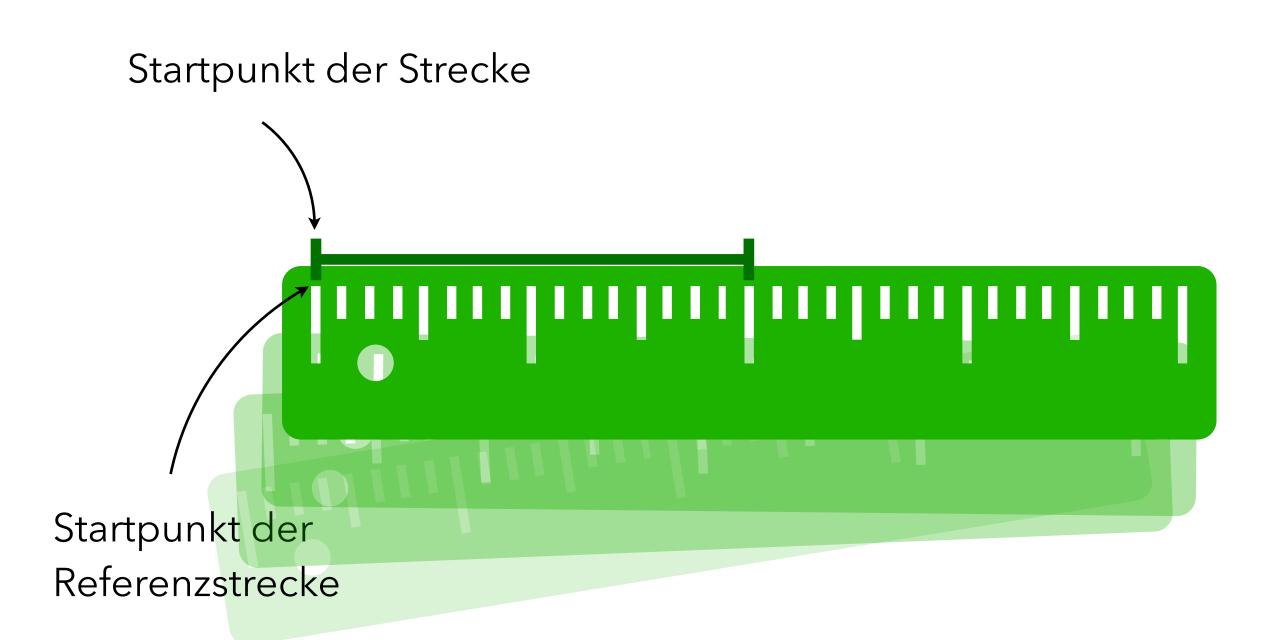
Arbeitsmittel

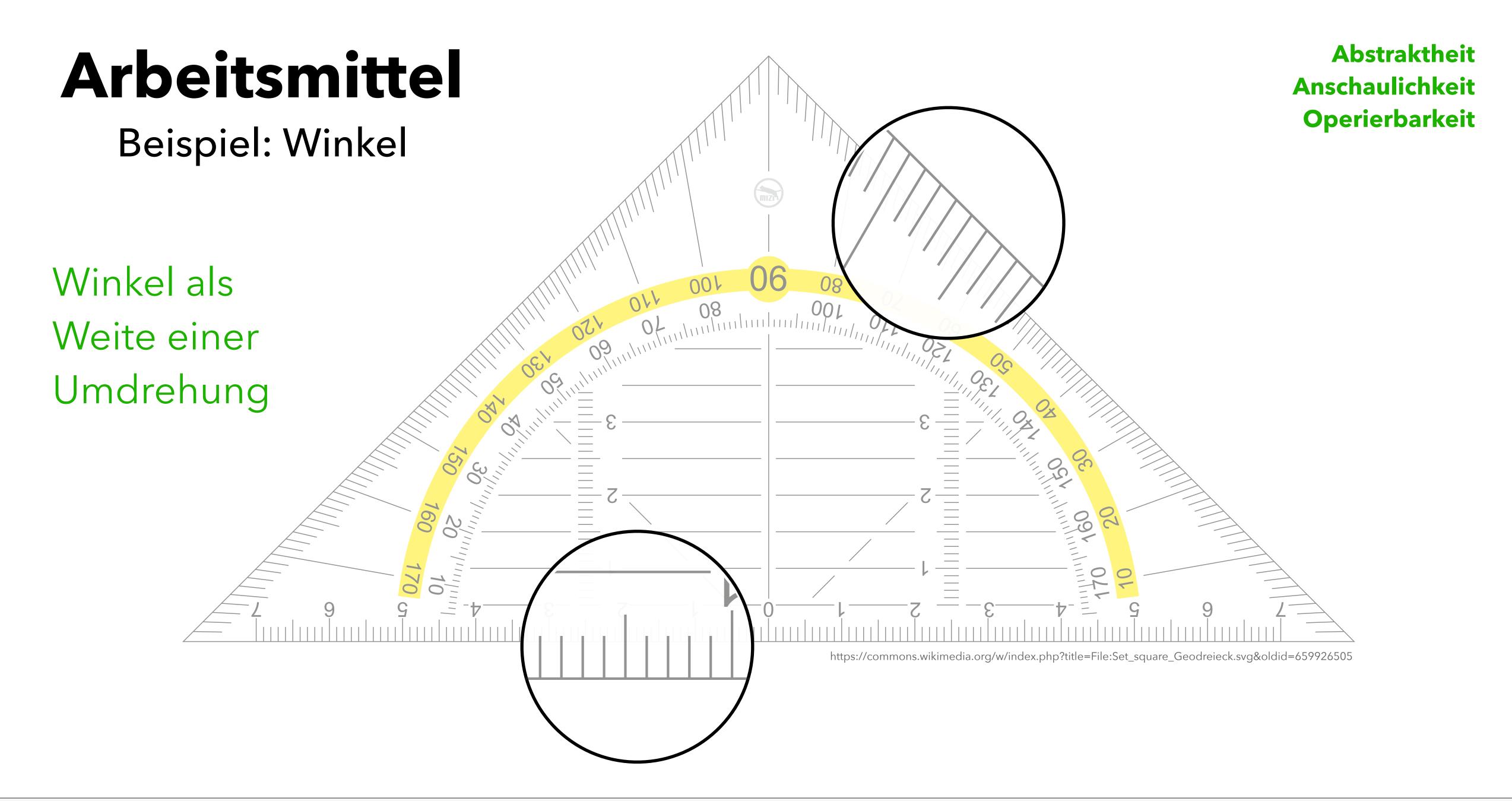
Beispiel: Längenmessung

Messen einer Stecke als Vergleichen zu einer Referenzstrecke

Operationen:

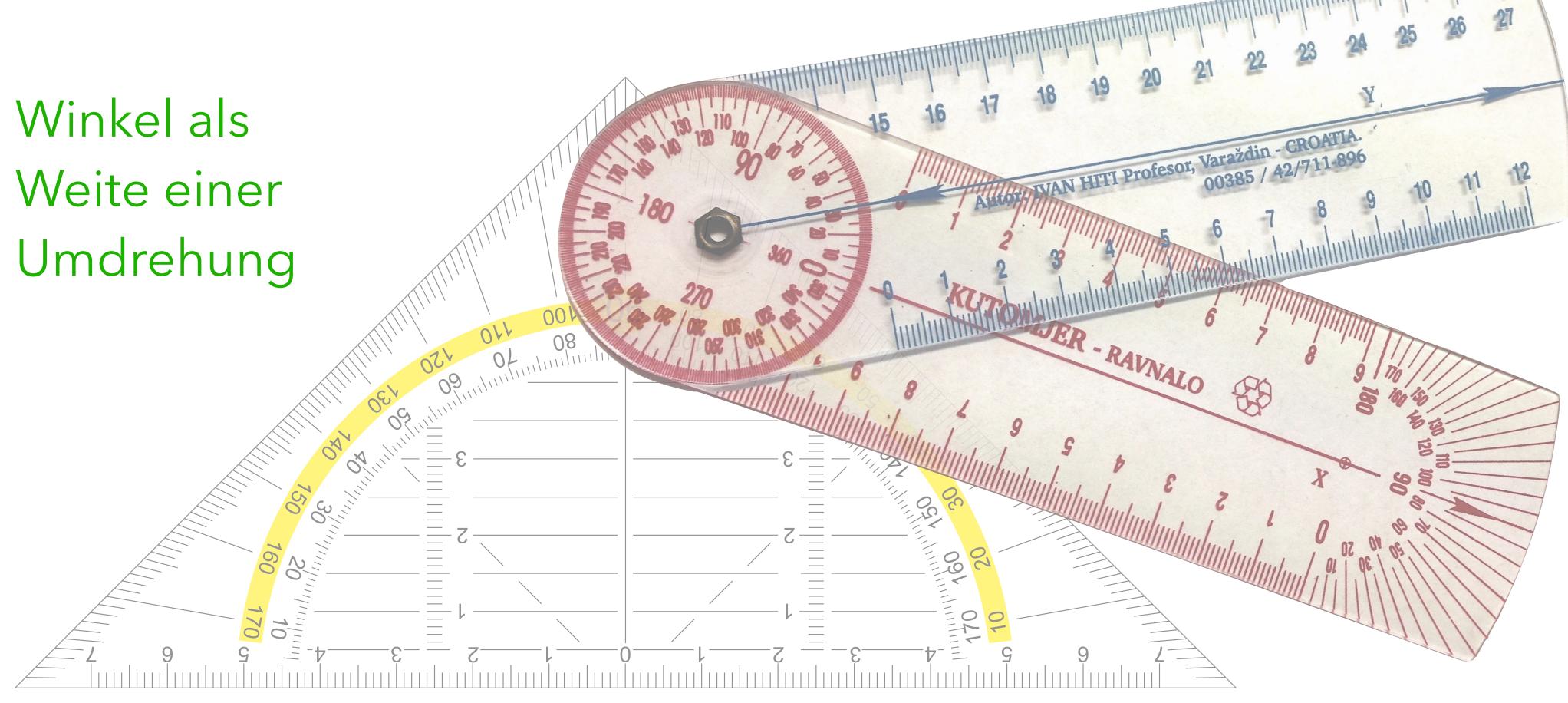
- Startpunkte aufeinanderlegen
- Lineal an Strecke ausrichten
- Zahl ablesen





Abstraktheit Anschaulichkeit Operierbarkeit

Beispiel: Winkel



https://commons.wikimedia.org/w/index.php?title=File:Set_square_Geodreieck.svg&oldid=659926505

Operationale Grundvorstellung

Gleichung als Ausdruck einer Berechnung oder Umformung

Gleichheitszeichen als »ergibt«-Zeichen

$$2 + 3 = 5 \qquad V = \frac{1}{3}\pi r^2 h$$

Funktionale Grundvorstellung

Gl. als Ausdruck eines Vergleichs zwischen zwei Funktionstermen

Gleichheitszeichen als Relationszeichen, Variablen als Veränderliche

$$x + 1 = -3x$$

Relationale Grundvorstellung

Gleichung als Anlass, Zahlen oder Terme zu ermitteln, für die beide Seiten denselben Wert besitzen

Gleichheitszeichen als Relationszeichen, Variable als Unbekannte

$$2x + 1 = 7$$

Objekt-Grundvorstellung

Gleichung als ein Objekt, das charakteristische Eigenschaften hat

$$x^2 + y^2 = r^2$$

(Weigand et al., 2022, S. 257 f.)

Gleichungen

Objekt »Gleichung«

Lösen von Gleichungen

Abstraktheit Anschaulichkeit Operierbarkeit

Operationale Grundvorstellung

Gleichung als Ausdruck einer Berechnung oder Umformung

$$2 + 3 = 5$$

$$V = \frac{1}{3}\pi r^2 h$$

»Rückwärtsrechnen«

Relationale Grundvorstellung

Gleichung als Anlass, Zahlen oder Terme zu ermitteln, für die beide Seiten denselben Wert besitzen

$$2x + 1 = 7$$

Äquivalenzumformungen

Funktionale Grundvorstellung

Gl. als Ausdruck eines Vergleichs zwischen zwei Funktionstermen

$$x + 1 = -3x$$

Schnittpunkt suchen

Objekt-Grundvorstellung

Gleichung als ein Objekt, das charakteristische Eigenschaften hat

$$x^2 + y^2 = r^2$$

Koordinaten prüfen

(Weigand et al., 2022, S. 257 f.)

Äquivalenzumformungen

Abstraktheit Anschaulichkeit Operierbarkeit

Was ist eine Gleichung?

$$2 + 3 = 8$$

$$2x = 14$$

Aussage

Aussageform

$$T_1(x) = T_2(x)$$

Was ist die Lösung einer Gleichung?

$$\frac{7}{x} = 2$$

Grundmenge \mathbb{G} \mathbb{Z} Definitionsmenge \mathbb{D} $\mathbb{Z}\setminus\{0\}$ Lösungsmenge \mathbb{L} $\{\ \}$

Was ist eine Äquivalenzumformung?

Jede Anwendung einer **injektiven Funktion** auf **beide Seiten einer Gleichung** verändert nicht die Lösungsmenge der
Gleichung und wir daher als **Äquivalenzumformung** bezeichnet.

Ein Wert $x_0 \in \mathbb{D}$ heißt Lösung einer Gleichung $T_1(x) = T_2(x)$, wenn $T_1(x_0) = T_2(x_0)$ eine wahre Aussage ist. Die Menge aller Lösungen wird Lösungsmenge genannt. Sie ist eine Teilmenge der Definitionsmenge.

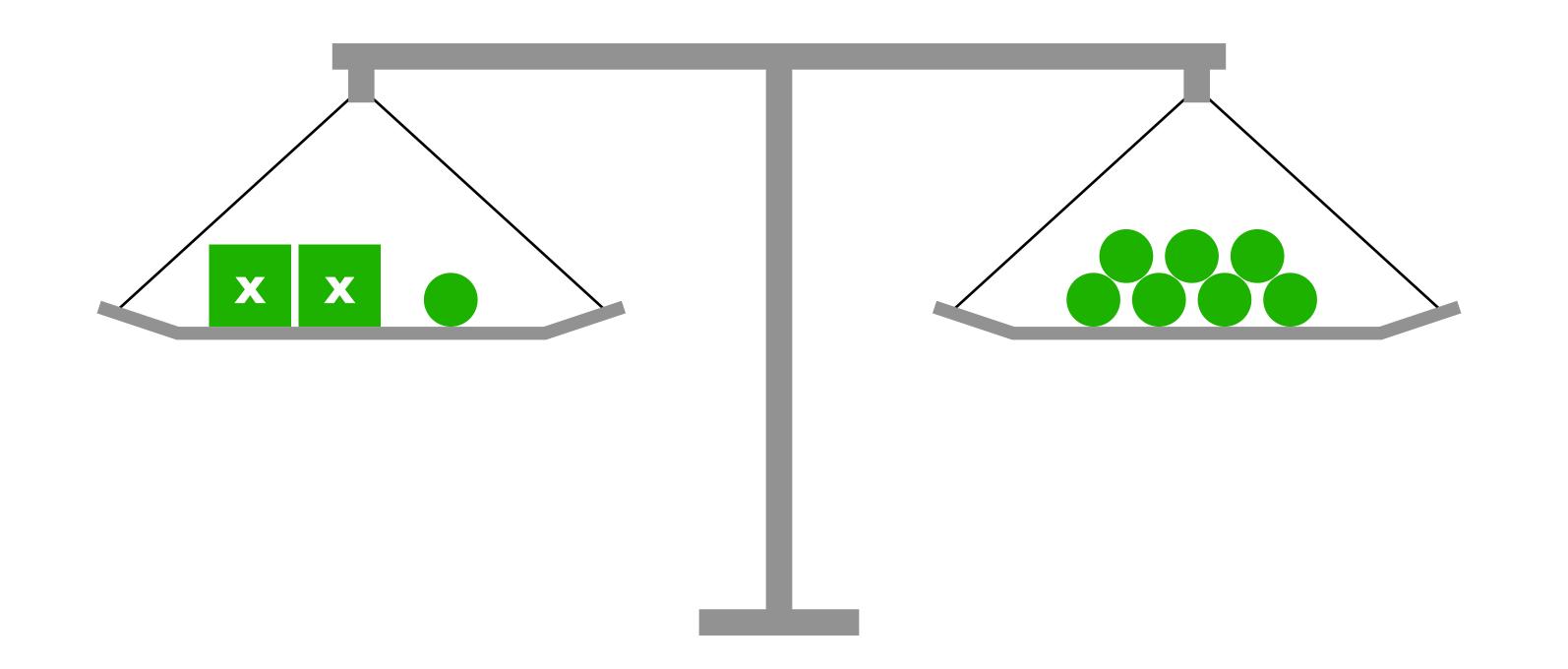
Lösungsmengenäquivalenz: Zwei Gleichungen heißen äquivalent, wenn ihre Lösungsmengen gleich sind.

Umformungsäquivalenz: Zwei Gleichungen heißen äquivalent, wenn sie durch Äquivalenzumformungen ineinander übergehen.

(Weigand et al., 2022, S. 242 ff.)

Äquivalenzumformungen

$$2x + 1 = 7$$
 | -1
 $2x = 6$ | :2
 $x = 3$



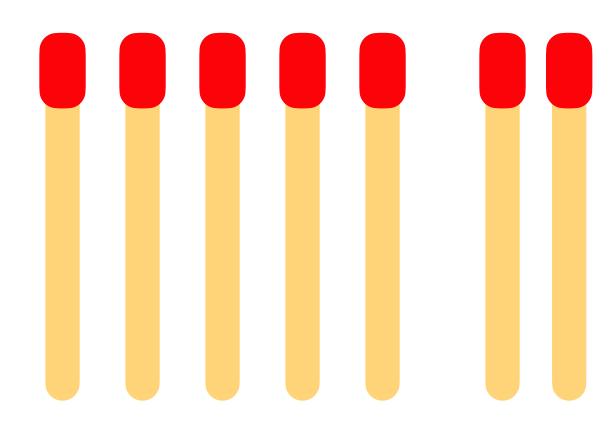
- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

Aquivalenzumformungen

$$2x + 1 = 7$$
 | -1

$$2x = 6 : 2$$

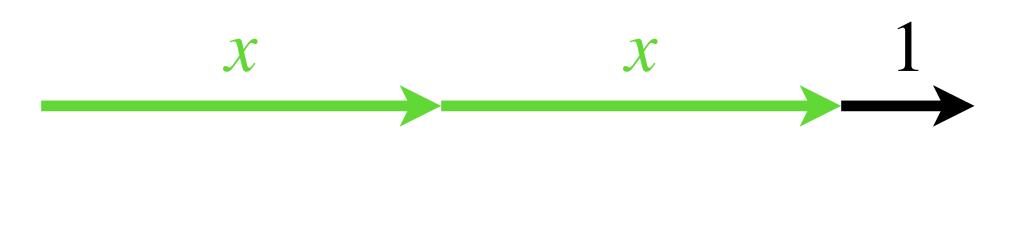
$$x = 3$$

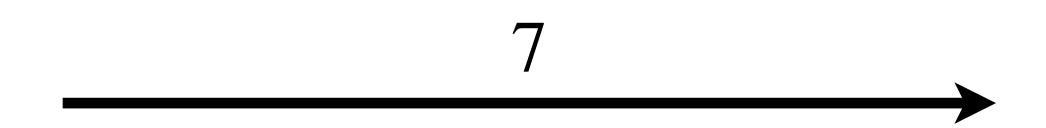


- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die Lösung einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

Äquivalenzumformungen

$$2x + 1 = 7$$
 | -1
 $2x = 6$ | :2
 $x = 3$

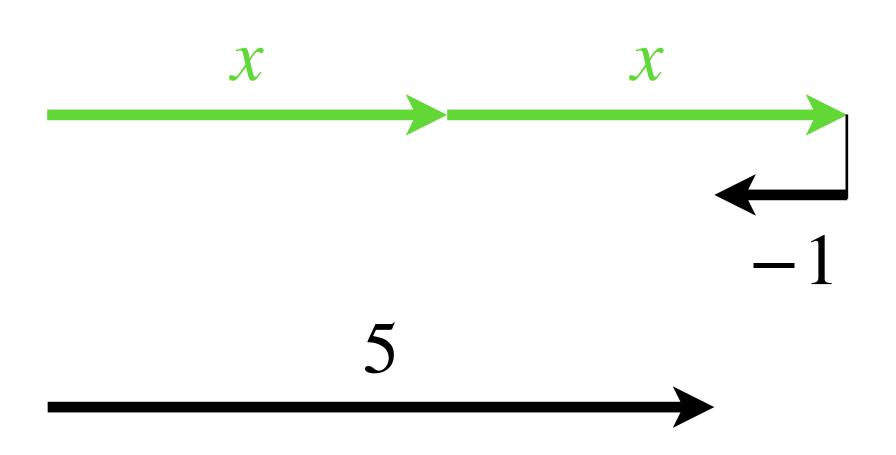




- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

Äquivalenzumformungen

$$2x - 1 = 5$$



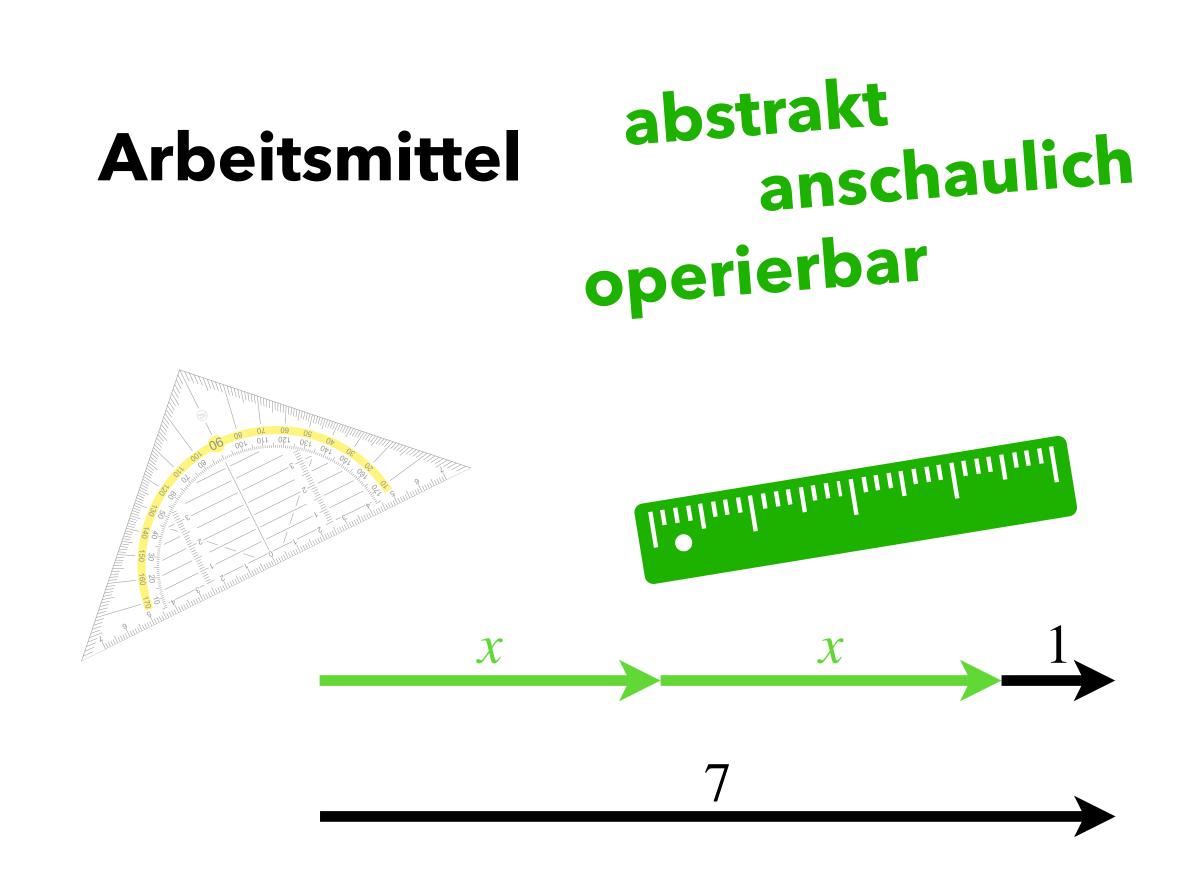
- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

Zusammenfassung Kapitel 4 - Darstellungen und Arbeitsmittel

Math. Verständnis mit Darstellungen ausbilden

- Veränderungen beim
 Darstellungswechsel untersuchen

 EIS-Prinzip / Prinzip der Darstellungsvernetzung
- Operative Veränderungen von Darstellungen untersuchen Operatives Prinzip
- Reflexion und sprachliche Begleitung



Literatur

- Dohrmann, C., & Kuzle, A. (2015). Winkel in der Sekundarstufe I Schülervorstellungen erforschen. In M. Ludwig, A. Filler, & A. Lambert (Hrsg.), Geometrie zwischen Grundbegriffen und Grundvorstellungen (S. 29-42). https://doi.org/10.1007/978-3-658-06835-6
- vom Hofe, R. (1995). Grundvorstellungen mathematischer Inhalte. Spektrum Akademischer Verlag.
- Salle, A., Schmidt-Thieme, B., Schulz, A., & Söbbeke, E. (2023). Darstellen und Darstellungen verwenden. In R. Bruder, A. Büchter, H. Gasteiger, B. Schmidt-Thieme, & H.-G. Weigand (Hrsg.), *Handbuch der Mathematikdidaktik* (S. 429–461). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-66604-3_14
- Wartha, S., & Schulz, A. (2011). *Aufbau von Grundvorstellungen (nicht nur) bei besonderen Schwierigkeiten im Rechnen*. IPN Kiel. http://www.sinus-an-grundschulen.de/fileadmin/uploads/Material_aus_SGS/Handreichung_WarthaSchulz.pdf
- Weigand, H.-G., Schüler-Meyer, A., & Pinkernell, G. (2022). *Didaktik der Algebra: Nach der Vorlage von Hans-Joachim Vollrath*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-64660-1